
Developing with Catalyst
as securely as possible

What do I need to do?

● Catalyst generally tries to help you be
secure and most of the plugins are pretty
good

● Some of it is just stuff you setup at the start
of the project

● Other bits you need to keep in mind during
development

Password storage

Simple answer - use bcrypt
Longer answer - make sure you use a crypto
hash with salt that’s well stretched. Scrypt and
PBKDF2 with SHA512 are other reasonable
alternatives.

DBIx::Class and password auth
Add a column to your password class,

 "password",
 {
 encode_column => 1,
 encode_class => 'Crypt::Eksblowfish::Bcrypt',
 encode_args => { key_nul => 0, cost => 8 },
 encode_check_method => 'check_password',
 }

Tweak the cost to be as high as you can afford (it slows the function down, and
hence slows down brute force).

Prevent Click Jacking

Use a combination of browser headers and
javascript for older browsers.

The answer used to be X-Frame-Options.
See the OWASP click jacking prevention guide.
Now CSP frame-ancestors property appears to
be the answer. Links at end.

Ensure you’re not exposing files

Be careful how the Static plugin works.
Don’t expose an sqlite auth database by
accident.

Keep HTTPS encrypted

If your app needs to be on HTTPS make sure it
stays that way. Take a look at HSTS.

Look at the Strict-Transport-Security
header

HTTPS content

Pay attention to caching. As we’ve moved to a
greater use of https the browsers have started
to change to cache https content.

Ensure sensitive data is not cached

Check every layer of your stack.

Prevent content type sniffing

Prevent the browser from looking at text files
and executing them as javascript because they
look like it

X-Content-Type-Options: nosniff

Session rotation

Rotate session ids when users login and log
out. If you have a high value site rotate them
more frequently. OWASP suggests,
● If the level of privilege changes, logging in,

sudo equivalent etc.
● After significant actions
● After a period of time or a number of

accesses

CSRF

Using Plack::Middleware::CSRFBlock module
is the simplest option

Barbie mentioned this one at a previous talk
Only downside is a second session cookie
unless you deal with linking the plack and
catalyst sessions

Error pages

Don’t expose too much information to the users
(or hackers)
Make sure you log everything, but keep things
nice for the users.
Catalyst::Plugin::CustomErrorMessage is the
simple answer, or it can be used as inspiration

XSS

We always need to keep on top of XSS.
Getting developers to put ‘| html’ on the end
of everything is not much fun.

Template::Toolkit

Template::AutoFilter
Stick ‘| none’ when you want to avoid
escaping

[% form.render | none %]

TT Alternative

Template::Alloy with AUTO_FILTER
Allows TT syntax, and similar ‘| none’

One caveat is that whenever a filter is specified it overrides
the html filter you specify. If you’re doing something like
html_linebreak you need to re-apply the filter, e.g.
[% var | html | html_line_break %]

Generating HTML in Perl

I generally discourage it.
If you do, make sure you encode your entities.
Simple answer is to use HTML::Entities.
There is a potentially faster module if that is
important.

General theme of XSS protection

Use templates with auto filters to make it just
work

Make avoiding encoding the exception, and
ensure you think about what you’re doing

Make sure everyone is constantly aware

SQL Injection

DBI and DBIx::Class have always made it easy
to avoid SQL injection.

That doesn’t mean you can’t accidentally
introduce it.

SQL Injection

Be careful when generating queries. Don’t trust
user input for field names. i.e. trusting names
from HTML forms as the field names in your
DB.
You know the column names you want to allow,
start from that point and see if the user input
mentions that.

DBIx::Class example

$rs->search({ $untrusted => $val });

If you’re not quoting names that’s a really
simple SQL injection hole. (Quoting names is
not the answer to ensure security)

Another DBIC clanger

Don’t do this,
 my $found_rate = $tariffs_rs->search
 (
 {
 "'$destination_number'" => { 'like' => \"number_match || '%'" }, # user input on the left
 },
)->first;

It’s almost an argument to turn on
quote_names in itself.

return $self->search(\["? like number_match || '%'", [dummy => $user_agent]])->first;

Don’t allow POST to be GET

POST actions should not be possible by GET
with the possible exception of logout.

It shouldn’t be possible for a hacker to get a
user to click on a link that does something the
user doesn’t expect

3rd Party Extensions

● Watch release notes of projects
● Sign up to security lists if available
● Perhaps use https://www.perlmodules.net/
● Consider what your possible exposure is

https://www.perlmodules.net/

Monitor your logs

Watch out for attacks
● Lots of 500’s from the same host may

suggest an attack

What haven’t I covered?

● Hosting 3rd party content
● Hosting user generated content
● User entry forms - they generally deal with

XSS threats fine
● Cookie entropy - it looks fine from the

outside; if a pentest suggests you have 0
bytes of entropy, they likely goofed.

… continued

● SSL setup
● Testing
● Firewalls
● Content Security Policy <- look this up

That’s not to say these aren’t important. They’
re just not in this talk.

Links
● https://www.owasp.org/index.php/Main_Page
● http://www.html5rocks.com/en/tutorials/security/content-security-policy/
● https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
● https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
● https://www.owasp.org/index.php/Session_Management#Rotate_Session_Identifiers
● http://blogs.msdn.com/b/ieinternals/archive/2010/04/21/internet-explorer-may-bypass-cache-for-

cross-domain-https-content.aspx
● http://stackoverflow.com/questions/174348/will-web-browsers-cache-content-over-https
● http://blogs.perl.org/users/olaf_alders/2012/07/using-plackmiddlewarecsrfblock-and-jquery-to-

deal-with-cross-site-request-forgery.html
● http://www.html5rocks.com/en/tutorials/security/content-security-policy/

https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://www.owasp.org/index.php/Clickjacking_Defense_Cheat_Sheet
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://www.owasp.org/index.php/Session_Management#Rotate_Session_Identifiers
https://www.owasp.org/index.php/Session_Management#Rotate_Session_Identifiers
http://blogs.msdn.com/b/ieinternals/archive/2010/04/21/internet-explorer-may-bypass-cache-for-cross-domain-https-content.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/04/21/internet-explorer-may-bypass-cache-for-cross-domain-https-content.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/04/21/internet-explorer-may-bypass-cache-for-cross-domain-https-content.aspx
http://stackoverflow.com/questions/174348/will-web-browsers-cache-content-over-https
http://stackoverflow.com/questions/174348/will-web-browsers-cache-content-over-https
http://blogs.perl.org/users/olaf_alders/2012/07/using-plackmiddlewarecsrfblock-and-jquery-to-deal-with-cross-site-request-forgery.html
http://blogs.perl.org/users/olaf_alders/2012/07/using-plackmiddlewarecsrfblock-and-jquery-to-deal-with-cross-site-request-forgery.html
http://blogs.perl.org/users/olaf_alders/2012/07/using-plackmiddlewarecsrfblock-and-jquery-to-deal-with-cross-site-request-forgery.html
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/

Modules
Template::Alloy

Template::AutoFilter

HTML::Entities

Crypt::Eksblowfish::Bcrypt

Catalyst::Plugin::CustomErrorMessage

Plack::Middleware::CSRFBlock

